5,115 research outputs found

    A Single Atom Transistor in a 1D Optical Lattice

    Full text link
    We propose a scheme utilising a quantum interference phenomenon to switch the transport of atoms in a 1D optical lattice through a site containing an impurity atom. The impurity represents a qubit which in one spin state is transparent to the probe atoms, but in the other acts as a single atom mirror. This allows a single-shot quantum non-demolition measurement of the qubit spin.Comment: RevTeX 4, 5 Figures, 4 Page

    Probing nn-Spin Correlations in Optical Lattices

    Full text link
    We propose a technique to measure multi-spin correlation functions of arbitrary range as determined by the ground states of spinful cold atoms in optical lattices. We show that an observation of the atomic version of the Stokes parameters, using focused lasers and microwave pulsing, can be related to nn-spin correlators. We discuss the possibility of detecting not only ground state static spin correlations, but also time-dependent spin wave dynamics as a demonstrative example using our proposed technique.Comment: 7 pages, 4 figure

    Weakly bound states of polar molecules in bilayers

    Full text link
    We investigate a system of two polarized molecules in a layered trap. The molecules reside in adjacent layers and interact purely via the dipole-dipole interaction. We determine the properties of the ground state of the system as a function of the dipole moment and polarization angle. A bound state is always present in the system and in the weak binding limit the bound state extends to a very large distance and shows universal behavior.Comment: Presented at the 21st European Conference on Few-Body Problems in Physics, Salamanca, Spain, 30 August - 3 September 201

    A Single Atom Mirror for 1D Atomic Lattice Gases

    Full text link
    We propose a scheme utilizing quantum interference to control the transport of atoms in a 1D optical lattice by a single impurity atom. The two internal state of the impurity represent a spin-1/2 (qubit), which in one spin state is perfectly transparent to the lattice gas, and in the other spin state acts as a single atom mirror, confining the lattice gas. This allows to ``amplify'' the state of the qubit, and provides a single-shot quantum non-demolition measurement of the state of the qubit. We derive exact analytical expression for the scattering of a single atom by the impurity, and give approximate expressions for the dynamics a gas of many interacting bosonic of fermionic atoms.Comment: 20 pages, 15 figure

    Cavitation Detection and Prevention in Professional Warewashing Machines

    Get PDF
    Cavitation is a phenomenon characterised by the presence of vapour bubbles in the fluid led by a local drop in pressure. In literature it is well known the impact on cavitation of pressure and temperature of pure water, but there are only few studies analysing how the presence of certain components of detergents and additives can influence the phenomenon. The impact of detergents and additives could be explained by the modified viscosity and rheology of the solution but also by the variation in the vapour tension. Most of these effects are due to the presence of surfactants and polymers in the solution. Cavitation in dynamic pumps is an important aspect that needs to be monitored and prevented, because it can cause damages affecting pump performances and inducing an increment in the level of vibration and noise. In professional warewashing machines, as for example the models of Electrolux Rack Type, this phenomenon can affect the operating functionalities of the machine. An experimental pump test rig has been realized with the aim of studying and monitoring the influence of these parameters on cavitation inception. This test rig permits measuring the pump performances at various operating conditions, in order to obtain its characteristic curves, and also forcing cavitation to measure its Net Positive Suction Head required (NPSHr) at different flow rates. The pump test rig allows also testing various configurations of the pump at different cavitation conditions, obtained by changing not only the suction pressure and temperature of the fluid but also its properties, adding detergents and additives. Cavitation inception can be detected measuring both the corresponding prevalence decrease and the change of vibration and noise level

    Multidrug-resistant HIV viral rebound during early syphilis: a case report

    Get PDF
    Background Syphilis has been associated with an increase in HIV RNA and a temporary decline in CD4 T cell counts in people living with HIV who are not receiving antiretroviral treatment (ART), and may be associated with a transient HIV RNA rebound in those who are receiving ART. Our case is the first to highlight the risk of a multidrug-resistant HIV viral rebound during the course of early syphilis even if antiretroviral drug concentrations are within the therapeutic range. Case presentation This 50-year-old HIV-1-positive male patient with concomitant early syphilis presented with an HIV RNA rebound (8908 copies/mL) during a scheduled visit to our clinic. He was receiving a stable ART regimen consisting of darunavir/cobicistat plus dolutegravir, and had a 15-year history of viral suppression. Good short-term drug adherence could be inferred as liquid chromatography tandem mass spectrometry showed that his trough antiretroviral drug concentrations were within the therapeutic range: darunavir 2353 ng/mL (minimum effective concentration > 500 ng/mL) and dolutegravir 986 ng/mL (minimum effective concentration > 100 ng/mL). A plasma RNA genotype resistance test revealed wild-type virus in the integrase region and protease region (PR), but extensive resistance in the reverse transcriptase (RT) region (M41L, E44D, D67N, K70R, M184V, L210W and T215Y). Phylogenetic analysis of next-generation sequences (used to investigate the presence of minor viral variants), the PR and RT sequences from plasma HIV RNA and pro-viral DNA extracted from peripheral blood mononuclear cells during the viral rebound, and a Sanger sequence obtained during a previous virological failure suggested clonal viral expression because the previous PR resistance mutations had been lost or had not been archived in pro-viral DNA. Conclusions This case shows that early syphilis may cause an HIV RNA rebound in patients under stable virological control with the potential of transmitting an extensively drug-resistant virus

    Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Get PDF
    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).Comment: 16 pages, 7 figure

    Vacuum Energy Density in the Quantum Yang - Mills Theory

    Full text link
    Using the effective potential approach for composite operators, we have formulated a general method of calculation of the truly non-perturbative Yang-Mills vacuum energy density (this is, by definition, the Bag constant apart from the sign). It is the main dynamical characteristic of the QCD ground state. Our method allows one to make it free of the perturbative contributions ('contaminations'), by construction. We also perform an actual numerical calculation of the Bag constant for the confining effective charge. Its choice uniquely defines the Bag constant, which becomes free of all the types of the perturbative contributions now, as well as possessing many other desirable properties as colorless, gauge independence, etc. Using further the trace anomaly relation, we develop a general formalism which makes it possible to relate the Bag constant to the gluon condensate not using the weak coupling solution for the corresponding β\beta function. Our numerical result for the Bag constant shows a good agreement with other phenomenological estimates of the gluon condensate.Comment: 28 pages and 4 figures, typos corrected, added new appendices and new references in comparison with the published versio

    Topological p_x+ip_y Superfluid Phase of Fermionic Polar Molecules

    Full text link
    We discuss the topological p_x+ip_y superfluid phase in a 2D gas of single-component fermionic polar molecules dressed by a circularly polarized microwave field. This phase emerges because the molecules may interact with each other via a potential V_0(r) that has an attractive dipole-dipole 1/r^3 tail, which provides p-wave superfluid pairing at fairly high temperatures. We calculate the amplitude of elastic p-wave scattering in the potential V_0(r) taking into account both the anomalous scattering due to the dipole-dipole tail and the short-range contribution. This amplitude is then used for the analytical and numerical solution of the renormalized BCS gap equation which includes the second order Gor'kov-Melik-Barkhudarov corrections and the correction related to the effective mass of the quasiparticles. We find that the critical temperature T_c can be varied within a few orders of magnitude by modifying the short-range part of the potential V_0(r). The decay of the system via collisional relaxation of molecules to dressed states with lower energies is rather slow due to the necessity of a large momentum transfer. The presence of a constant transverse electric field reduces the inelastic rate, and the lifetime of the system can be of the order of seconds even at 2D densities ~ 10^9 cm^{-2}. This leads to T_c of up to a few tens of nanokelvins and makes it realistic to obtain the topological p_x+ip_y phase in experiments with ultracold polar molecules.Comment: 15 pages, 9 figures, published versio
    • …
    corecore